首页 生活常识文章正文

必备收藏(皮皮衡阳字牌)怎么让系统发好牌(透视)详细教程2025

生活常识 2025年06月03日 06:09 4 xvxv
#手机麻将 #小程序 #游戏日常 #微信小程序 #支持定制 #微乐小程序 #微乐 #软件开发 #仅供娱乐 #禁止赌博 #微乐麻将 #微乐斗地主 #微乐跑得快 #游戏日常
【AI推荐相关信息】
(1)参数规模:过去几年,大模型的参数量呈指数上升,GPT-3 模型参数量已达到 1750 亿。GPT-4 具有 多模态能力,其参数量相比 GPT-3 会更大。我们在测算中假设 2023 年多模态大模型的平均参数量达到 10000 亿个,之后每年保持 20%的增速;普通大模型的平均参数量达到 2000 亿个,之后每年保持 20%的增速。 (2)训练大模型所需的 Token 数量:参数规模在千亿量级的自然语言大模型 GPT-3、Jurassic-1、Gopher、 MT-NLG,训练所需的 Token 数量在千亿量级,而一些多模态大模型在训练过程中所需 Token 数据量也跟随参 数量增长而增长,我们在测算中假设多模态大模型训练所需 Token 数量达到万亿级别,并且 Token 数量与模型 参数规模保持线性增长关系。 (3)每 Token 训练成本与模型参数量的关系:参考 OpenAI 发布的论文《Scaling Laws for Neural Language Models》中的分析,每个 token 的训练成本通常约为 6N,其中 N 是 LLM 的参数数量,我们在测算中遵循这一 关系。 (4)单张 GPU 算力:因为在训练大模型时,主要依赖可实现的混合精度 FP16/FP32 FLOPS,即 FP16 Tensor Core 的算力,我们在测算中选取 A100 SXM 和 H100 SXM 对应的算力 312 TFLOPS 和 990 TFLOPS 作为参数。 (5)GPU 集群的算力利用率:参考 Google Research 发布的论文《PaLM: Scaling Language Modeling with Pathways》中的分析,我们在测算中假设算力利用率约为 30%。 其他基本假设包括多模态研发厂商个数、普通大模型研发厂商个数等。根据所有假设及可以得到,2023 年 -2027 年,全球大模型训练端峰值算力需求量的年复合增长率为 78.0%。2023 年全球大模型训练端所需全部算 力换算成的 A100 总量超过 200 万张,新增市场需求空前旺盛。

发表评论

盈晗号Copyright Your WebSite.Some Rights Reserved. 备案号:川ICP备66666666号 Z-BlogPHP强力驱动